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▪ Retaining walls are commonly used for 
grade separation in construction of new or 
expansion of existing highway.

▪ Mechanically Stabilized Earth (MSE) walls 
are created through the use of horizontal, 
linear reinforcing elements and 
compacted backfill material.

INTRODUCTION
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▪ The largest loads from an MSE structure are 
often due to the mass of reinforced backfill. 

▪ The foundation soils beneath the backfill 
must have sufficient bearing capacity so that 
the MSE wall and backfill meets both 
strength and serviceability limit states.

INTRODUCTION

External stabil i ty –  
Bearing capacity

Bearing failure
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▪ Ease of construction

▪ Up to 50% cost reduction

▪ Less construction time

▪ Less special skilled personnel

▪ Less construction space requirement

▪ Reduced right of way acquisition

▪ Incorporates architectural finishes

▪ Reduced carbon footprint

ADVANTAGES
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▪ In discussions with Bureau of Materials and Tests, there 
have been many recent cases where MSE walls required 
significant, costly foundation strengthening to meet 
bearing capacity requirements. 

▪ The general feeling is that guidance from FHWA GEC 11 
(Berg et al. 2009) is conservative and that the foundation 
stresses due to the MSE retaining structures are 
significantly lower than or the allowable bearing pressures 
are higher than those used in a design. 

MOTIVATION

8



ASEL@
AUBURN

▪ While the design guideline mentions that the MSE is 
flexible and can be used even with poor bearing 
foundation, a strong foundation is still assumed. 

▪ Foundation stress function assumes a rigid block and is 
based on eccentrically loaded rigid footing.

MOTIVATION
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OBJECTIVE

▪ The objective of this study is to assess the performance of a full scale 
MSE structure built on foundation with pockets of poor bearing zone.

▪ This is part of a research program to determine vertical stress 
distribution at the base of an MSE retaining structure and the magnitude 
and location of the resultant force. 
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ASEL - ADVANCED STRUCTURAL ENGINEERING LAB

State-of-the-art facility for macro-scale experimental characterization and performance testing of 
infrastructure, engineering materials (concrete, metals, timber, soils, aggregates), structural 
components, structural systems, and integrated soil-structure systems.

▪ Vulcan Materials Company Laboratory

▪ Auburn University Concrete Materials Laboratory
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EXPERIMENTAL SETUPEXPERIMENTAL SETUP
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INSTRUMENTATION

▪  Vibrating wire earth pressure cells

▪ Foil resistance strain gages

▪ Settlement plates

▪ Slope inclinometer

▪ Shape array (SAAV)

▪ Draw wire potentiometer

▪ 3D laser scanner

▪ Total station
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CONSTRUCTION

▪  Drainage layer

▪ Foundation sand

▪ #57 crushed stone

▪ Precast panels

▪ Steel straps

Materials
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FABRICATING TIMBER SUPPORT WALLS
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PLACING FOUNDATION LAYERS
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INSTRUMENTATION INSTALLATION AND SABOTAGE
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PLACING WALL AND MSE STRAPS
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INSTALLING TIMBER WALLS AND CONSTRUCTION ABOVE FLOOR
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TOPPING OUT
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HIGHWAY SURCHARGE
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ADDITIONAL OVERLOAD
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TESTING SUMMARY

Test Stage Description

1 End of Construction

2 Induced loss of foundation support by 
deflating air bladders

3 Traffic surcharge (q=2 psi)

4 Increased surcharge (q= 3.8 psi)

5 Increased surcharge (q= 6.3 psi)

6 Increased surcharge (q= 7.5 psi)
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• SP-01 settled about 4 inches

Settlement plates layout

Induced soft spot 
with air bladders

Total station survey results
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Line 1

Line 2

Line 3

Before inducing settlement After 4-in diff settlement

• Measured stresses are closer to 
self-weight than design 
assumptions

Induced soft spot 
with air bladders
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• End of construction • Before testing • After load testing

• Maximum strain = 635 me
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• No significant lateral 
displacement
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Point cloud analysis comparing scans before and after deflating air bladders
• SP-01 showed 3.8 in (0.096 m) settlement. 
• Wall facing panel showed no real deviation.
• 97% of scan surface within 0.4 in (0.01 m)
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▪  Reinforcement tension 
for maximum surcharge 
(7.5 psi) are within design 
limits

▪ Location of maximum 
tension in reinforced 
mass closely follows the 
bi-linear coherent gravity 
failing wedge
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• Foundation sand

• Material Calibration
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• #57 Stone (Large scale triaxial test)
• Material Calibration
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• Material Calibration

• Steel tensile test
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• Staged construction
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▪ End of 
construction

▪ Deflated bladder
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▪ Phase after deflating bladder

▪ Line 1 ▪ Line 2
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▪ Adopting the vertical stress function from rigid gravity walls for an MSE structure 
over-estimates the eccentricity and the bearing stress

▪ Worst case scenario (foundation failure) given by design is L/6 (i.e., a load multiplier 
of 1.50gH). From measured stresses, it is L/34 (1.06gH) about 10% increase

▪ Induced differential settlement at foundation doesn’t entirely progress to the surface

▪ All stability assessment are satisfactory even with a poor bearing zone in the 
foundation

▪ Eccentricity does not increase with increasing surcharge

▪ Applied surcharge is not completely transferred to foundation (only 30%)

▪ FE results also showed stress redistribution

▪ More FE analysis is ongoing

▪ Future research will look at bearing capacity factors for MSE walls
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